Name:	Block:	Due Date:

Exploring Point Mutations Activity

Procedure

- 1. Transcribe and translate the DNA sequence provided on this page.
 - a. You will need to use the codon table found in your textbook or found on your "Breaking the Code" worksheet.
- 2. On the next page, mutate nucleotide #10 in the DNA sequence provided, according to the rules in table 1.
 - a. Your instructor will provide you with dice, so you can simulate what happens when the DNA sequence is mutated if the number you roll does not result in a change in nucleotide #10, keep rolling until the nucleotide changes.
 - b. Every student at your table should roll the die to mutate their own DNA. In this way, there will be more outcomes to compare.
- 3. Write down your newly mutated DNA sequence.
- 4. Determine and record the mRNA and the protein sequence coded by the mutated DNA sequence.
- 5. Mutate nucleotide #16 in the DNA sequence provided, according to the rules in table 1.
- 6. Write down your newly mutated DNA sequence.
- 7. Determine and record the mRNA and the protein sequence coded by the mutated DNA sequence.

Nucleotide #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
DNA Sequence	Т	Α	С	Α	Т	Α	С	G	Α	С	G	Τ	С	Т	Α	С	G	Т	Α	С	Τ

1. **TRANSCRIPTION** Write the **mRNA sequence** for the DNA sequence above.

2. **TRANSLATION** Write the **amino acid sequence** (polypeptide) of the mRNA sequence above.

If you toss a …	Then you must …				
1	Substitute your nucleotide with an A				
2	Substitute your nucleotide with a C				
3	Substitute your nucleotide with a G				
4	Substitute your nucleotide with a T				
5	Delete the nucleotide				
6	Insert a nucleotide right after the				
	#10 nucleotide (Toss the die again				
	until you get 1–4 to determine which				
	letter nucleotide to insert.)				

Table 1: Rules for determining which kind of mutation will take place

MUTATION #1

- 3. **MUTATION** In the space below, write the complete new **DNA sequence** with the mutation at nucleotide #10 position.
- 4. **TRANSCRIPTION** Write the **mRNA sequence** from mutated DNA above.
- 5. **TRANSLATION** Write the **amino acid sequence** (polypeptide) of the mRNA sequence above. Circle any differences from the original protein.

MUTATION #2

- MUTATION Keeping the mutated nucleotide from Mutation #1, mutate nucleotide #16 following the rules outlined in table 1. In the space below, write the complete new DNA sequence with the mutation at nucleotide #16 position. (The DNA sequence should now have two mutations.)
- 7. TRANSCRIPTION Write the mRNA sequence from mutated DNA above.
- 8. **TRANSLATION** Write the **amino acid sequence** (polypeptide) of the mRNA sequence above. Circle any differences from the original protein.

Analysis

1. If a mistake is made during transcription, will that mistake be permanent? During translation? Why or why not? Will it be passed on to the next generation of cells? Explain your answers.

- 2. Why do you think you used a die to determine the mutations? Why did you keep the first mutation when mutating the sequence a second time? In other words, why didn't you "fix" it?
- 3. Did everyone in your group get the same mutation(s)? Explain. What are the odds of two people rolling the same number? Of rolling the same mutation?
- 4. Differentiate between the following types of mutations:
 - a) Point Mutation (Substitution)
 - b) Deletion
 - c) Insertion
- 5. Explain the statement: "A mutation causes a change in the genotype, but that change does not always cause a change in the phenotype."